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On the collapse of locally isostatic networks

By V. Kapko!*, M. M. J. TrReacy!, M. F. THORPE!
AND S. D. GUEST?

L Department of Physics and Astronomy, Arizona State University, P.O. Box
871504, Tempe, AZ 85287-1504, USA
2 Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK

We examine the flexibility of periodic planar networks built from rigid corner-connected
equilateral triangles. Such systems are locally isostatic, since for each triangle the
total number of degrees of freedom equals the total number of constraints. These nets
are two-dimensional analogues of zeolite frameworks, which are periodic assemblies
of corner-sharing tetrahedra. If the corner connections are permitted to rotate, as if
pin-jointed, there is always at least one collapse mechanism in two dimensions (and at
least three mechanisms in three dimensions). We present a number of examples of such
collapse modes for different topologies of triangular net. We show that the number of
collapse mechanisms grows with the size of unit cell. The collapsible mechanisms that
preserve higher symmetry of the network tend to exhibit the widest range of densities
without sterical overlap.

Keywords: flexibility; locally isostatic networks; zeolites

1. Introduction

In this paper, we examine locally isostatic periodic planar networks of corner-
sharing equilateral triangles. In these networks, each triangle is connected at the
corners to three neighbours, and each corner is shared between two triangles.
The triangles are rigid but can freely rotate in the plane, as if pin-jointed at
their corners. The networks, being periodic, are infinite in extent, but can be
decomposed into finite repeated units, analogous to unit cells in crystals. By
locally isostatic, we mean that, for each rigid unit, the number of degrees of
freedom equals the number of constraints. For our plane nets, each equilateral
triangle has three degrees of freedom (two translations and one rotation) and
six constraints (z and y coordinates for each corner). But each corner is shared
between two triangles, so the number of constraints per triangle is also three,
rendering these nets locally isostatic.

The three-dimensional analogue of these systems, networks of corner-sharing
SiO, tetrahedra, provides a model of zeolites. These systems are also locally
isostatic with six degrees of freedom per tetrahedron and 12 shared constraints.
This ‘rigid unit mode’ model has been intensively studied by M. Dove and
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co-workers (Hammonds et al. 1997, 1998), who applied it to diffusion and
adsorption in zeolites facilitated by flexibility. More recently, Sartbaeva et al.
(2006), using geometric simulations, have shown that frameworks of real zeolites
can be realized at some range of densities called the ‘flexibility window’. They
argue that the presence of the flexibility window can be used as a criterion for the
selection of potential synthetic targets among the millions of hypothetical zeolite
frameworks (Treacy et al., 1997, 2004; Earl & Deem 2006).

Networks of corner-sharing triangles or tetrahedra have the same flexibility
properties as pin-jointed frames made of rigid bars placed at triangle edges and
connected by frictionless joints. These finite pin-jointed structures have been
extensively studied. Maxwell (1864) introduced a simple rule: a system having j
joints and no kinematic constraints requires at least 35 — 6 (in three dimensions)
or 2j — 3 (in two dimensions) bars to be rigid. The Maxwell rule was generalized
by Laman’s (1970) theorem, which solves the problem of generic rigidity in two
dimensions (rigidity that depends only on the topology of the system but does
not depend on the specific edge lengths nor joint coordinates). The Laman count
has been implemented in the ‘pebble game’ by Jacobs & Thorpe (1995, 1996).
This numerical algorithm can determine the rigidity of an arbitrary generic
pin-jointed structure and enumerate its rigid and underconstrained regions.
Unfortunately, the pebble game cannot be applied to zeolite frameworks or to
the two-dimensional networks considered here. These systems are nongeneric
and exist in symmetrical realizations that can make some constraints redundant,
and hence the system is not amenable to simple constraint counting.

To overcome these difficulties, one can use the linear algebra method described
by Pellegrino & Calladine (1986). This method calculates the rank of the
‘equilibrium’ or ‘rigidity’ matrix and identifies infinitesimal motions in the system.
These motions can be either finite (where the system can be continuously
deformed without deformations of its rigid units) or infinitesimal (where there
is deformation of second or higher order).

The flexibility of infinite repetitive structures is much less known. Guest &
Hutchinson (2003) generalized the Pellegrino and Calladine matrix method for
infinite repetitive structure. They also proved, based on a linear algebra argument,
that locally isostatic infinite repetitive structures always have at least one (in two
dimensions) or three (in three dimensions) internal mechanisms. More recently,
Hutchinson & Fleck (2006) have classified periodic mechanisms and states of
self-stress for the kagome lattice.

In this paper, we extend these studies to a larger number of locally isostatic
networks. We show that all the networks studied have finite mechanisms that
change the volume of the unit cell.

2. Theoretical background

(a) Matriz analysis and kinetic determinacy of repetitive structures

Pellegrino & Calladine (1986) used linear algebra methods to analyse the
flexibility of pin-jointed structures. They described the equilibrium matrix, A,
which relates bar tensions, t, with external forces, f, acting on the joints

A-t=f (2.1)
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The transpose of the equilibrium matrix, the compatibility matrix, C, connects
the joint displacements, d, with bar elongations, e,

C-d=e. (2.2)

The compatibility matrix is an n by 2j matrix, where n is the number of bars
and j is the number of joints. The number of mechanisms, or floppy modes, f, is
related to the rank of the compatibility /equilibrium matrix r by

f=2j—r. (2.3)

For the structures that we are considering, there are, on average, just the right
number of constraints so that n =27, so that, for local isostatic networks of the
kind we talk about in this paper, the equilibrium matrix A in equation (2.1)
is square and n by n. This implies that, if we consider a fixed unit cell, and
write down a compatibility matrix, the matrix will also be square and n by n.
The unit cell is the basic repetitive unit which contains a fixed number of nodes,
edges, etc. and which do not change during a deformation. Thus although the
area of the cell does change, the contents do not. This repetitive unit may be
just the original cell that defines the undeformed lattice itself, or an integer
number of such cells in each of the two directions in the plane. However, if we
now also allow the unit cell to deform, in two dimensions we get another three
deformation parameters (for instance two orthogonal stretches and a shear), and
the ‘augmented’ compatibility matrix will be n by n + 3 (Guest & Hutchinson
2003). This matrix is guaranteed to have at least a three-dimensional nullspace
(joint movements/changes in shape of the unit cell that, to first order, do not
cause extension of bars/deformation of triangles). This nullspace must contain
two rigid-body displacements; but this still leaves an orthogonal one-dimensional
space. This space cannot be a rigid-body rotation, as such a motion is not
allowed by the repetitive displacements demanded by the lattice; thus it must
be an ‘internal’ mechanism. This is a subtle argument that results in at least one
internal deformation for each repetitive cell. These are infinitesimal deformations,
but the argument can be repeated, as the structure is still repetitive after the
deformation is made, and hence leads to finite deformation(s) and pathways that
are discussed in §3f Because the network is repetitive, it is infinite in extent
and therefore no rotational motion is possible. This is because any such rotation
would not be consistent with the repetitive nature of the structure. There are of
course still the two macroscopic translational modes of deformation that can be
achieved at no cost in energy and so are zero frequency or floppy modes, albeit
of a trivial kind. Although the absence of rotations might seem trivial, it in fact
leads indirectly to observable consequences. What would have been a rotation
mode has been converted into an internal deformation by the imposition of a
repetitive structure. This is a mathematically rigorous result, illustrated by the
many examples in this paper.

There seems at first sight a contradiction here. On the one hand, we
are saying that we have locally isostatic networks, which are therefore rigid,
while, on the other hand, we are saying there is at least one internal
deformation mode. The difference is that having a repetitive structure makes
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the network atypical, thus introducing additional floppy mode(s) or internal
deformation(s). If the network were truly generic, then it would have no
repetitive unit from a geometrical standpoint, and hence would indeed
be rigid.

A similar argument applies in three dimensions, where allowing the unit cell
to deform gives six deformation parameters, the augmented compatibility matrix
is n by n + 6 and the nullspace must be at least six-dimensional, three of which
are simple translational degrees of freedom, which leaves at least three ‘internal’
mechanisms or floppy modes. Thus, locally isostatic networks, like zeolites, which
are made up of corner-sharing tetrahedra, have at least three internal deformation
modes if they are repetitive, because such networks are atypical. This leads to
a rich behaviour in a wide variety of silica networks (Hammonds et al. 1997,
1998) and in zeolites (Sartbaeva et al. 2006). Pathways in these networks are also
finite, as infinitesimal deformations can be strung together (as in two dimensions),
but have much more complexity, which is one motivation for this paper. Studying
pathways in two dimensions is so much more tractable, as well as easy to visualize,
than studying pathways in three dimensions.

(b) Ring count

Next we rederive the simple relation between fractions of rings of different sizes.
If we replace each triangle with a vertex, and consider each link between triangles
as an edge, any network of corner-sharing triangles can be turned into a three-
connected net. In this paper, we use the terms net and network interchangeably
to describe an infinite set of vertices connected by edges. Thus three-connected
nets (or networks) are those obtained when every vertex is joined to exactly
three other vertices by edges. For any infinite two-dimensional net, according to
the Euler equation (Coxeter 1961), the sum of the number of vertices V and
polygons (rings) P per unit cell is equal to the number of edges, V + P =E.
If we state that there are N, polygons with n vertices in each unit cell, then
P =7%" N,. Further, counting the vertices for every polygon, )" nN,, will count
each vertex three times; similarly, counting the vertices for every edge, 2F, will
count each vertex three times, so that

3V=2E=) nN,. (2.4)

n

Thus, substituting into the Euler equation,
6P=6F—6V, (2.5)

6> Nu=) nhN, (2.6)

which means that the average ring size is six for any plane net. Thus, it is
impossible to build a network that comprises only small rings (fewer than six) or
only large rings. The presence of large rings in a network has to be compensated
by small rings.

Proc. R. Soc. A (2009)
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(@) (b)

Figure 1. Four different configurations of the kagome topology. (a¢) Minimum density state, with
p6mm plane group symmetry. (b) Snapshot of the collapse mode available when there is one
hexagon per hexagonal unit cell (p31m plane group symmetry). (¢) Snapshot of an alternative
collapse mode when there are two hexagons per rectangular unit cell (p2gg plane group symmetry).
(d) Snapshot of an additional collapse mode when there are four topologically distinct hexagons
per oblique unit cell (p2 plane group symmetry).

3. Examples

(a) Kagome lattice

The simplest network of triangles, the kagome lattice (figure 1), comprises
only one type of ring, which according to equation (2.6) must be hexagonal
(the corresponding three-connected net is known as the ‘honeycomb’ net). The
infinitesimal collapse mechanisms of the kagome lattice have been studied in detail

Proc. R. Soc. A (2009)


http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on February 6, 2014

3522 V. Kapko et al.

by Hutchinson & Fleck (2006). With the smallest unit cell, which has the form
of a rhombus with angle 7 /3, and consists of only two triangles, the network has
only one collapse mechanism, as shown in figure 1b. This mechanism reduces the

pbmm plane symmetry to p31m. For definitions of plane symmetry groups see
Hahn (1995). The area of the unit cell is

S =a?sinmw/3=~/32(1 — cos 0), (3.1)

where a and [ are, respectively, the length of the unit cell and the side of triangle,
and 0 is an angle between two lines connecting two centres of adjacent triangles.
The maximal area, Sy.y, occurs at 6 =, and the value of the minimal area, Syn,
depends on whether triangles are allowed to overlap. If triangles are allowed to
overlap (6 <m/3), then the unit area vanishes at # =0, which means that any
finite piece of a kagome lattice collapses into a single triangle, but with a unit
cell of zero edge length.

The number of internal mechanisms grows as the relative size of the unit cell
increases. Thus, figure 1¢ shows a new mechanism (in addition to the mechanism
shown in figure 1b) that appears when the unit cell contains two rings. This
mechanism adopts plane group symmetry p2gg, and can be transformed into
the higher symmetry, and vice versa, through the configuration of maximal area
(figure 1a). The two rings are related by a glide symmetry operation and therefore
have equal area, and the new mechanism does not affect the density calculation
for the kagome lattice.

A further collapse mode that appears for the 2 x 2 unit cell is shown
in figure 1d. Its unit cell has plane group symmetry p2, and contains four
distinct hexagon configurations. The network maintains a twofold symmetry
axis at the middle of each ring. Finally, figure 2 shows one of the collapsing
mechanisms in the kagome net with a unit cell that is a 5 x 5 repeat of the basic
kagome cell. The plane group symmetry is p3, with nine topologically distinct
hexagon configurations.

(b) ‘Roman mosaic’ lattice

For the next example, we consider the net shown in figure 3, which is made
of equal numbers of rhombi and octagons (we will refer to the corresponding
three-connected net as the roman mosaic lattice, as it is a tiling pattern found
on Roman floors). Some of the collapse mechanisms are shown in figure 3. Since
a rhombus has only one internal degree of freedom, defined by the angle 6 shown
in figure 4, we consider the ‘roman mosaic’ lattice as tessellations of rhombi.
Within the primitive unit cell (four equilateral triangles, delineated by the solid
lines) the network has only one mechanism (sheared collapse), shown in figure 3b.
There is a higher symmetry, face-centred setting c¢2mm delineated by the dotted
cell in figure 3b. The area of the oblique primitive cell (shown by the solid lines)
is equal to twice the area of the rectangle shown in figure 4. From figure 4,
|AB| =2Isin[0/2] and |BC|=2[lsin[0/2 4 /6], thus the area of unit cell, S, is
given by

S=9|AB|-|BC| =41 [«/5/2—008(9+7r/6)]. (3.2)

The area has a maximum at 6 =57/6 which equals Sy =212 (2 + «/3) and a
minimum at 0 =x/3 with Sy, = 23 2.

Proc. R. Soc. A (2009)
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Figure 2. One collapse mechanism of the kagome net with a 5x5 unit cell (p3 plane
group symmetry).

Two other collapse mechanisms can be found when the unit cell remains square,
but now contains eight triangles. The mechanism shown in figure 3¢ (symmetric
collapse) can be presented as columns (or rows) of rhombi connected through
mirror lines. The unit cell splits into two rectangles with sides equal to |AB| and
|BC| and two squares, one with side |AB| and the other with side |BC|. Then
the unit cell area is

S =2|AB| - |BC| + |AB|* + |BC|> = 212 + v/3)(1 — cos[f + 7/6]). (3.3)

The maximal area is Spax =4 12(2 + \/5) and the minimum area is exactly half
thiS, Smin =2 12(2 + ﬁ)

The last mechanism considered here (asymmetric collapse, figure 3d) can be
viewed as rows of rhombi with two different, alternating sizes. The unit cell area
for this case has been solved numerically.

Figure 5 shows the dependency of the area of one unit cell of the Roman mosaic
on the angle 0 for different collapsing mechanisms. The solid lines correspond to
the region where triangles do not overlap (6 > /3). The shear mechanism shows
larger changes in unit cell area than the others. Once overlap between triangles
is allowed, the structures continue to shrink until the entire infinite net collapses
at # =0 into a finite structure of a few triangles (similar to the collapse of the

Proc. R. Soc. A (2009)
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(@) (b)

(d)

Figure 3. Roman mosaic net. (a) Minimum density configuration, p4mm. (b) Snapshot of the shear
collapse mode that occurs when there is one octagon and one rhombus per primitive unit cell,
c¢2mm. (c) Snapshot of the high symmetry collapse mode when there are two octagons and two
rhombi per square unit cell, pAmm. (d) Snapshot of the low symmetry collapse mode when there
are four octagons and four rhombi per square unit cell, p2myg.

A D

Figure 4. Rhombus area used to calculate the area of the roman mosaic lattice.

Proc. R. Soc. A (2009)
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Figure 5. Normalized areas of the Roman mosaic network as a function of the inter-triangle angle
in the rhombus. There is a distinct equation of state for each collapse mode. Vertical lines marked
60° and 120° indicate the angles where triangles and oxygens touch (see §3e for details; dashed
line, sheared mode; dotted-solid line, high symmetry collapse; dotted line, low symmetry collapse).

kagome lattice). The angle 6 is zero when the adjoining equilateral triangles lie
exactly on top of each other. The dashed line corresponding to the sheared mode
stops at 6 = 34°. At this point the system flips to the other configuration as shown
in figure 6 and continues to collapse to zero area configuration with angle 6 fixed
at /3.

(¢) Network with odd rings

Both the kagome and Roman mosaic networks have even numbers of triangles
in each ring, and also have high symmetry, which may increase the number
of infinitesimal mechanisms (Guest 2000) by making constraints redundant.
Flexibility is not restricted to structures with even rings. The network shown
in figure 7 comprises only odd rings (sizes 5 and 7), with a rectangular unit cell
of plane group symmetry pg, and containing 16 equilateral triangles. Figure 7Ta
presents the maximal area configuration, and figure 7b demonstrates a collapse
mechanism that retains the rectangular symmetry of the unit cell, but alters its
aspect ratio.

(d) Large random network

Our last example, a large random network shown in figure 8, is taken from
the computer modelling of vitreous silica (He 1985). This periodic structure was
generated by successively introducing 250 defects into an 800-site honeycomb
lattice, while maintaining full corner connectivity. The network contains 33.5
per cent pentagons, 24 per cent heptagons and 4.5 per cent octagons and appears
disordered. A first-order calculation shows that this network has one infinitesimal
collapse mode, and following this path gives an alternative finitely deformed
configuration, which is also shown superimposed in the figure.

Proc. R. Soc. A (2009)
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(a) 1’ (b)

(d)
L1

4,6

3,5

2,2

Figure 6. Illustration of the flip associated with the shear mode of Roman mosaic. (a) Some large
area configuration, (b) before flip, (¢) after flip and (d) zero area. Each vertex is labelled with an
integer number. Vertices 1’ and 2" are periodic images of vertices 1 and 2.

(b)

Figure 7. A network with only odd rings, 5-rings and 7-rings in equal numbers. (a) Minimum
density state (maximum area) and (b) an intermediate density state. This net maintains pg plane
group symmetry during deformation.

Proc. R. Soc. A (2009)
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|

L

Figure 8. A large random network. Two states are superimposed; the unit cell of the state shown
in grey has an area just over 2% smaller than the state shown in black.

(e) Flexibility index
As a way to measure network flexibility we introduce a flexibility index
F = Siax/ Smin- (3.4)

The maximum area, Spy.y, is defined as the area where triangles are under tension
and would start stretching if the area were increased further. We use two
different definitions for the the minimum area, Su;,. In one definition
the minimum area occurs when triangles first touch, which corresponds to the
density where the smallest angle 6, equals /3. The other option for the
minimum area is related to the definition of the flexibility window in three-
dimensional zeolite frameworks (Sartbaeva et al. 2006). According to this,
each vertex is occupied by an oxygen atom with radius equal to half of the
triangle side. Then the minimum area, defined by the touching of oxygen
atoms, occurs when the smallest angle equals 0,1, = 27r/3. Both definitions give
rise to flexibility indexes, the former Fa and the latter Fp, and these are
presented in table 1 for different frameworks and their collapse mechanisms.
From the definition of the flexibility indices, it is clear that the larger they are,
the more flexible the framework is. For rigid structures the flexibility indices
equal unity.

Proc. R. Soc. A (2009)
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@ T ] W T T T T ] @

Figure 9. The ‘pathway’ plot of unit cell area S shown as the length of the radius vs inter-triangle
angle 6 in polar coordinates. (a) 1 x 1 kagome net, (b) 2 x 2 kagome net and (c¢) shear collapse
mode of Roman mosaic net. The solid black square and the solid grey circle represent the maximum
and zero areas.

Table 1. Flexibility indices for different collapse mechanisms of various lattices.

lattice mechanism Fa Fo
kagome 1 x 1 (hgure 1b) 4 1.333
2 x 1 (hgure 1c) 4 1.333
2 x 2 (figure 1d) 2 1.180
5 x 5 (higure 2) 2.187 1.135
roman mosaic sheared (figure 3b) 2.155 1.077
symmetric collapse (figure 3c¢) 2 1.072
asymmetric collapse (figure 3d) 1.862 1.066
5 % 7 net figure 7b 1.553 1.090

(f) Collapse of networks without repulsion

In this section we take one further step in our modelling of these two-
dimensional isostatic networks, and assume that there is no repulsion between
triangles or between vertices. In this purely theoretical situation, compression of
the network will continue until the unit cell area becomes zero. In that case, all
triangles are lying on top of each other and the entire infinite network becomes
a very small system of few (in some cases just one) triangle(s). In the simplest
case, the basic collapse mechanism of the kagome lattice shown in figure 15, the
network can be continuously folded from the point of maximum area (figure 1a) to
the point of zero area by changing the angle 6 from 7 to 0. At the 6 =0 point, all
periodic images of vertices coincide with each other and whole system is reduced
to a single triangle. However, there is a second way to collapse the system. It also
starts from the maximum area configuration and proceeds by increasing 6 from 7
to 2. It is easy to see that the final configuration is again just a single triangle,
but each intermediate point is the same as in the previous pathway, but related
by a symmetry operation. Since the two paths intersect with each other at only
two points—maximum and zero areas—they can be combined into one continuous
closed pathway, as shown in figure 9a. The pathways shown in figure 9a use the
area S as the radius in polar coordinates, and use 6 as the usual angle in polar
coordinates. For the kagome lattice, the basic collapse pathway has the form of
a cardioid given by equation (3.1).

Proc. R. Soc. A (2009)
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As mentioned earlier, the 1 x 1 kagome lattice has only one folding—unfolding
path. With increasing size of the unit cell, new collapse modes appear. Figure 9b
represents one such mode in the 2 x 2 kagome lattice. This pathway has the
shape of a highly deformed cardioid. In both the cases mentioned earlier the
fundamental unit cells keep their shape (a = b, y =n/3) during compression and
at the zero area a =b=0.

It turns out that the collapse pathways of two other systems, the 2 x 1 kagome
(figure 1¢) and the Roman mosaic net high symmetry collapse, also have form of a
cardioid. For the Roman mosaic low-symmetry collapse, it is a deformed cardioid.
However, this is not the case for all networks. An interesting example is the shear
mode of the Roman mosaic (figure 3b). Again, we consider the pathway of the
unit cell area S as a function of an intertriangle angle . At the maximum area,
angle 6 =57 /6. Similar to previous cases, there are two collapse paths related
to decreasing or increasing 0. At some density, both paths have a discontinuity,
shown with dashed lines on figure 9¢. At that density the system cannot continue
to follow the folding path without violation of geometric constraints, so, instead,
the system flips to another configuration that has the same density. Both
configurations, before and after the flip, are shown in figure 6b,c. After the flip,
the system collapses to zero area, which has a shape of two adjusted triangles
(figure 6d). During the compression a = b, and these go to zero as the area goes
to zero. The angle y decreases from /2 to about 27 /9 before the flip and remains
fixed at /3 after it.

We note that results in this section are often different if a different angle
is chosen to display the pathway, and we have found no objective way of
selecting which angle to display. Those shown here give particularly ‘simple’ closed
pathways as shown in the three panels of figure 9.

4. Conclusions

We have tested the argument contained in Guest & Hutchinson (2003) about
collapsible mechanisms in repetitive, locally isostatic structures. According to this
argument, such structures are collapsible with at least one mechanism for plane
nets and at least three mechanisms for three-dimensional nets. Our examples are
two-dimensional networks of corner-sharing triangles ranging from the kagome
lattice, which is the simplest network containing rings of only one size, up to the
large random network with 800 triangles. We show that all these structures are
flexible. The number of collapse mechanisms grows with the size of the unit cell.
But this is still the subject of ongoing work. Results do appear for the number of
infinitesimal modes for particular systems, in, for example, Hutchinson & Fleck
(2006) and Hammonds et al. (1998), but no general rule has been found, nor is
there any understanding of how these infinitesimal modes might extend to finite
deformations. We have also found that the collapsible mechanisms that preserve
the higher symmetry of the network tend to exhibit the widest range of densities
without sterical overlap.
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